{"id":14323,"date":"2025-03-19T09:49:12","date_gmt":"2025-03-19T07:49:12","guid":{"rendered":"https:\/\/www.razor-labs.com\/caso-de-estudio-deteccion-de-un-desequilibrio-critico-en-el-tambor-de-una-centrifuga-con-datamind-ai\/"},"modified":"2025-09-05T13:36:16","modified_gmt":"2025-09-05T10:36:16","slug":"caso-de-estudio-deteccion-de-un-desequilibrio-critico-en-el-tambor-de-una-centrifuga-con-datamind-ai","status":"publish","type":"post","link":"https:\/\/www.razor-labs.com\/es\/caso-de-estudio-deteccion-de-un-desequilibrio-critico-en-el-tambor-de-una-centrifuga-con-datamind-ai\/","title":{"rendered":"Caso de estudio: Detecci\u00f3n de un desequilibrio cr\u00edtico en el tambor de una centr\u00edfuga con DataMind AI™"},"content":{"rendered":"\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
<\/div>\n\t\t\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t
\n\t\t\t
Blog<\/a>, Case studies<\/a><\/div>\t\t<\/div>\n\t\t\t\t<\/div>\n\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t
\n\t\t\t

Caso de estudio: Detecci\u00f3n de un desequilibrio cr\u00edtico en el tambor de una centr\u00edfuga con DataMind AI™<\/h1>\t\t<\/div>\n\t\t\t\t<\/div>\n\t\t\t\t\t<\/div>\n\t\t<\/div>\n\t\t\t\t\t<\/div>\n\t\t<\/section>\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t
marzo 19, 2025<\/div>\t\t<\/div>\n\t\t\t\t<\/div>\n\t\t\t\t\t<\/div>\n\t\t<\/div>\n\t\t\t\t\t<\/div>\n\t\t<\/section>\n\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t
\n\t\t\t
By Razor Labs<\/div>\t\t<\/div>\n\t\t\t\t<\/div>\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\n\t\t\t\t\t\t<\/span>\n\t\t<\/div>\n\t\t\t\t<\/div>\n\t\t\t\t<\/div>\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t
5 min read<\/div>\t\t<\/div>\n\t\t\t\t<\/div>\n\t\t\t\t\t<\/div>\n\t\t<\/div>\n\t\t\t\t\t<\/div>\n\t\t<\/section>\n\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t
\n\t\t\t
SHARE<\/div>\t\t<\/div>\n\t\t\t\t<\/div>\n\t\t\t\t\t<\/div>\n\t\t<\/div>\n\t\t\t\t
\n\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t<\/i>\t\t\t\t\t\t\t<\/span>\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t<\/div>\n\t\t\t\t\t<\/div>\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t<\/i>\t\t\t\t\t\t\t<\/span>\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t<\/div>\n\t\t\t\t\t<\/div>\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t<\/i>\t\t\t\t\t\t\t<\/span>\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t<\/div>\n\t\t\t\t\t<\/div>\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t<\/i>\t\t\t\t\t\t\t<\/span>\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t<\/div>\n\t\t\t\t\t<\/div>\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t<\/i>\t\t\t\t\t\t\t<\/span>\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t<\/div>\n\t\t\t\t\t<\/div>\n\t\t\t\t\t\t<\/div>\n\t\t\t\t<\/div>\n\t\t\t\t<\/div>\n\t\t\t\t\t<\/div>\n\t\t<\/div>\n\t\t\t\t\t<\/div>\n\t\t<\/section>\n\t\t\t\t\t<\/div>\n\t\t<\/div>\n\t\t\t\t
\n\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t
\n\t\t\t

marzo 19, 2025<\/h2>\t\t<\/div>\n\t\t\t\t<\/div>\n\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t\t\t
\n
\n

DataMind AI<\/a>\u2122 was installed at a major coal site to monitor critical equipment, including a high-speed centrifuge essential for material separation. Any failure or imbalance could disrupt production and lead to costly downtime.<\/p>\n

Following a routine stoppage, DataMind AI\u2122 detected an abnormal increase in vibration levels, signaling a severe drum imbalance caused by debris buildup inside the drum. While traditional monitoring would have eventually identified the issue, the AI system autonomously flagged it in real time, prompting immediate corrective action.<\/p>\n

By detecting the problem early, the maintenance team cleaned the drum before real damage occurred, preventing unplanned downtime and ensuring continuous and efficient operation.<\/p>\n<\/div>\n<\/div>\n\t\t\t\t\t\t<\/div>\n\t\t\t\t<\/div>\n\t\t\t\t\t<\/div>\n\t\t<\/div>\n\t\t\t\t

\n\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t\t\t\t\"\"\t\t\t\t\t\t\t\t\t\t\t\t\t<\/div>\n\t\t\t\t<\/div>\n\t\t\t\t\t<\/div>\n\t\t<\/div>\n\t\t\t\t\t<\/div>\n\t\t<\/section>\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t

Conclusion<\/h2>\t\t<\/div>\n\t\t\t\t<\/div>\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t\t\t
\n
\n
\n
\n
\n

DataMind AI\u2122 enhanced centrifuge reliability by detecting early signs of imbalance before operational inefficiencies escalated into failures. This case highlights how AI-driven predictive maintenance prevents costly disruptions, optimizes equipment performance, and ensures continuous production flow.<\/p>\n<\/div>\n<\/div>\n<\/div>\n<\/div>\n<\/div>\n\t\t\t\t\t\t<\/div>\n\t\t\t\t<\/div>\n\t\t\t\t

\n\t\t\t\t
\n\t\t\t\t\t\t\t

Fill in the form to read an entire case study<\/strong><\/h4>\n\t\t\t\t\t\t<\/div>\n\t\t\t\t<\/div>\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\n\t\t\t\n\t\t\t\n\n\t\t\t\n\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t\t\t